Nephro-Urology Monthly

Published by: Kowsar

Application of Parametric Models to a Survival Analysis of Hemodialysis Patients

Maryam Montaseri 1 , Jamshid Yazdani Charati 1 , * and Fateme Espahbodi 2
Authors Information
1 Department of Biostatistics, School of Health, Mazandaran University of Medical Sciences, Sari, IR Iran
2 Departmant, Cancer Research Center Mazandran, Medical Faculty, Medical Science University, Sari, IR Iran
Article information
  • Nephro-Urology Monthly: November 01, 2016, 8 (6); e28738
  • Published Online: September 13, 2016
  • Article Type: Research Article
  • Received: November 15, 2015
  • Revised: February 13, 2016
  • Accepted: April 2, 2016
  • DOI: 10.5812/numonthly.28738

To Cite: Montaseri M, Charati J Y, Espahbodi F. Application of Parametric Models to a Survival Analysis of Hemodialysis Patients, Nephro-Urol Mon. 2016 ; 8(6):e28738. doi: 10.5812/numonthly.28738.

Abstract
Copyright © 2016, Nephrology and Urology Research Center. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Lee ET, Go OT. Survival analysis in public health research. Annu Rev Public Health. 1997; 18: 105-34[DOI][PubMed]
  • 2. Cox DR. Regression models and life-tables. J R Stat Soc Series B Stat Methodol. 1972; 34(2): 187-220
  • 3. Therneau TM. Modeling survival data: extending the Cox model. 2000;
  • 4. Hashemian AH, Beiranvand B, Rezaei M, Reissi D. A Comparison Between Cox Regression and Parametric Methods in Analyzing Kidney Transplant Survival. World App Sci J. 2013; 26(4): 502-7[DOI]
  • 5. Smeltzer S, Bare B, Hinkle J, Cheever K. Brunner & suddarth's textbook of medical-surgical nursing. 2010; 9: 1328-42
  • 6. Fauci A, Kasper D, Hauser S, Jameson J, Loscalzo J. Harrison's Principles of Internal Medicine, Kidney & Urinary Tract Disorders. 2008; : 130-6
  • 7. Fauci , Braunwald , Kasper , Hauser , Longo . Harrison's internal medicine(disorders of the kidney & urinary tract). 2008;
  • 8. Montaseri M, Yazdani J, Espahbodi F, Mousavi SJ. Five-year survival rate in hemodialysis patients Attending Sari Imam Khomeini Hospital. J Mazand Univ Med Sci. 2013; 23(101): 78-85
  • 9. Lee E. Statistical Method for survival data analysis. 1992; : 8-17
  • 10. Weibull W. A statistical distribution function of wide applicability. J Appl Mechanics. 1951; 18(3): 293-7
  • 11. Viscomi S, Pastore G, Dama E, Zuccolo L, Pearce N, Merletti F, et al. Life expectancy as an indicator of outcome in follow-up of population-based cancer registries: the example of childhood leukemia. Ann Oncol. 2006; 17(1): 167-71[DOI][PubMed]
  • 12. Limpert EW, Stahel A, Abbt M. Log-normal distributions across the sciences: keys and clues. BioScience. 2001; 51(5): 341-52[DOI]
  • 13. Kleinbaum DG, Klein M. , Gail M, Krickeberg K, Samet J, Tsiatis A, et al. Survival Analysis-A Self-Learning Text. 2005; : 294-5
  • 14. Duchateau L, Janssen P. Statistics for Biology and Health-The Frailty Model. 2008; : 32-6
  • 15. Klein JP, Moeschberger ML. Survival analysis : techniques for censored and truncated data. 2003;
  • 16. Cleves M, Gould W, Gutierrez R. An Introduction to Survival Analysis Using STATA. 2004;
  • 17. Pourhoseingholi MA, Hajizadeh E, Moghimi Dehkordi B, Safaee A, Abadi A, Zali MR. Comparing Cox regression and parametric models for survival of patients with gastric carcinoma. Asian Pac J Cancer Prev. 2007; 8(3): 412-6[PubMed]
  • 18. Argyropoulos C, Chang CC, Plantinga L, Fink N, Powe N, Unruh M. Considerations in the statistical analysis of hemodialysis patient survival. J Am Soc Nephrol. 2009; 20(9): 2034-43[DOI][PubMed]
  • 19. Nikulin M, Haghighi F. A Chi-Square test for Power Generalized Weibull Family for the Head-and-Neck cancer censored data. J Mathematical Sci. 2007; 133: 1333-52[DOI]
  • 20. Ravani P, Parfrey P, MacRae J, James M, Quinn R, Malberti F, et al. Modeling survival of arteriovenous accesses for hemodialysis: semiparametric versus parametric methods. Clin J Am Soc Nephrol. 2010; 5(7): 1243-8[DOI][PubMed]
  • 21. Tammadondar M, Aghighi M. Nurse and dialysis. 2010; 28
  • 22. Shariati A, Mojerloo M, Hesam M, Mollaei E, Abbasi A, Asayesh H. Hemodialysis efficacy in patients with end stage renal disease (ESRD) in Gorgan, Northern Iran (2008). J Gorgan Uni Med sci. 2010; 12(1): 80-4
  • 23. Jungers P, Massy Z, Nguyen-Khoa T, Choukroun G, Robino C, Fakhouri F. Longer Duration of Predialysis Nephrological Care is Associated with improved Long-Term Survival of Dialysis Patients. Nephrol Dialysis Transplant. 2001; 16: 2357-64
  • 24. Ahuja T, Grady J, Khan S. Changing Trends in the Survival of Dialysis Patients with Human Immunodeficiency Virus in the United States. J Am Society Nephrol. 2002; 13: 1889-93[PubMed]
  • 25. Yeates A, Hawley C, Mundy J, Pinto N, Haluska B, Shah P. Treatment outcomes for ischemic heart disease in dialysis-dependent patients. Asian Cardiovasc Thorac Ann. 2012; 20(3): 281-91[DOI][PubMed]
  • 26. Jablonski A. The multidimensional characteristics of symptoms reported by patients on hemodialysis. Nephrol Nurs J. 2007; 34(1): 29-37[PubMed]
  • 27. Sa Carvalho M, Henderson R, Shimakura S, Sousa IP. Survival of hemodialysis patients: modeling differences in risk of dialysis centers. Int J Qual Health Care. 2003; 15(3): 189-96[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments