Nephro-Urology Monthly

Published by: Kowsar

Longitudinal Serum Creatinine Levels in Relation to Graft Loss Following Renal Transplantation: Robust Joint Modeling of Longitudinal Measurements and Survival Time Data

Shima Younespour 1 , Abbas Rahimi Foroushani 1 , Elham Maraghi 1 , Zohreh Rostami 2 , Behzad Einollahi 2 , Mohammad Reza Eshraghian 1 , * and Kazem Mohammad 1
Authors Information
1 Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
2 Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
Article information
  • Nephro-Urology Monthly: September 01, 2016, 8 (5); e39292
  • Published Online: August 1, 2016
  • Article Type: Research Article
  • Received: May 19, 2016
  • Revised: June 11, 2016
  • Accepted: June 28, 2016
  • DOI: 10.5812/numonthly.39292

To Cite: Younespour S, Rahimi Foroushani A, Maraghi E, Rostami Z, Einollahi B, et al. Longitudinal Serum Creatinine Levels in Relation to Graft Loss Following Renal Transplantation: Robust Joint Modeling of Longitudinal Measurements and Survival Time Data, Nephro-Urol Mon. 2016 ; 8(5):e39292. doi: 10.5812/numonthly.39292.

Copyright © 2016, Nephrology and Urology Research Center. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. Kopple JD. National kidney foundation K/DOQI clinical practice guidelines for nutrition in chronic renal failure. Am J Kidney Dis. 2001; 37(1 Suppl 2)-70[PubMed]
  • 2. El Nahas M. The global challenge of chronic kidney disease. Kidney Int. 2005; 68(6): 2918-29[DOI][PubMed]
  • 3. Mousavi SS, Soleimani A, Mousavi MB. Epidemiology of end-stage renal disease in Iran: a review article. Saudi J Kidney Dis Transpl. 2014; 25(3): 697-702[PubMed]
  • 4. Ghanei E, Nasrolahi A, Razaghi M. Evaluation Short and Long term graft and survival rates in kidney transplanted patients between 1995-2011. Ann Mil Health Sci Res. 2012; 9(4): 251-4
  • 5. Salesi M, Rostami Z, Rahimi Foroushani A, Mehrazmay AR, Mohammadi J, Einollahi B, et al. Chronic graft loss and death in patients with post-transplant malignancy in living kidney transplantation: a competing risk analysis. Nephrourol Mon. 2014; 6(2)[DOI][PubMed]
  • 6. Arend SM, Mallat MJ, Westendorp RJ, van der Woude FJ, van Es LA. Patient survival after renal transplantation; more than 25 years follow-up. Nephrol Dial Transplant. 1997; 12(8): 1672-9[PubMed]
  • 7. Briggs JD. Causes of death after renal transplantation. Nephrol Dial Transplant. 2001; 16(8): 1545-9[PubMed]
  • 8. James GD, Sealey JE, Alderman M, Ljungman S, Mueller FB, Pecker MS, et al. A longitudinal study of urinary creatinine and creatinine clearance in normal subjects. Race, sex, and age differences. Am J Hypertens. 1988; 1(2): 124-31[PubMed]
  • 9. Verhave JC, Fesler P, Ribstein J, du Cailar G, Mimran A. Estimation of renal function in subjects with normal serum creatinine levels: influence of age and body mass index. Am J Kidney Dis. 2005; 46(2): 233-41[DOI][PubMed]
  • 10. Little RJA, Rubin DB. Statistical analysis with missing data. 2014;
  • 11. Prentice RL. Covariate measurement errors and parameter estimation in a failure time regression model. Biometrika. 1982; 69(2): 331-42
  • 12. Ratcliffe SJ, Guo W, Ten Have TR. Joint modeling of longitudinal and survival data via a common frailty. Biometrics. 2004; 60(4): 892-9[DOI][PubMed]
  • 13. Tsiatis AA, Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. Statistica Sinica. 2004; : 809-34
  • 14. Guo X, Carlin BP. Separate and joint modeling of longitudinal and event time data using standard computer packages. Am Statistic. 2004; 58(1): 16-24
  • 15. Li N, Elashoff RM, Li G. Robust joint modeling of longitudinal measurements and competing risks failure time data. Biom J. 2009; 51(1): 19-30[DOI][PubMed]
  • 16. Baghfalaki T, Ganjali M, Hashemi R. Bayesian joint modeling of longitudinal measurements and time-to-event data using robust distributions. J Biopharm Stat. 2014; 24(4): 834-55[DOI][PubMed]
  • 17. Baghfalaki T, Ganjali M, Berridge D. Robust joint modeling of longitudinal measurements and time to event data using normal/independent distributions: a Bayesian approach. Biom J. 2013; 55(6): 844-65[DOI][PubMed]
  • 18. Rizopoulos D. Joint models for longitudinal and time-to-event data: With applications in R. 2012;
  • 19. Spiegelhalter D, Thomas A, Best N, Lunn D. WinBUGS user manual. 2003;
  • 20. Hariharan S, Johnson CP, Bresnahan BA, Taranto SE, McIntosh MJ, Stablein D. Improved graft survival after renal transplantation in the United States, 1988 to 1996. N Engl J Med. 2000; 342(9): 605-12[DOI][PubMed]
  • 21. Brooks DH. Handbook of Dialysis. Nephrol Nurs J. 2015; 42(3): 295-6
  • 22. Jaffa MA, Gebregziabher M, Jaffa AA. Analysis of multivariate longitudinal kidney function outcomes using generalized linear mixed models. J Transl Med. 2015; 13: 192[DOI][PubMed]
  • 23. Rizopoulos D, Ghosh P. A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. Stat Med. 2011; 30(12): 1366-80[DOI][PubMed]
  • 24. Debout A, Foucher Y, Trebern-Launay K, Legendre C, Kreis H, Mourad G, et al. Each additional hour of cold ischemia time significantly increases the risk of graft failure and mortality following renal transplantation. Kidney Int. 2015; 87(2): 343-9[DOI][PubMed]
  • 25. Pascual M, Theruvath T, Kawai T, Tolkoff-Rubin N, Cosimi AB. Strategies to improve long-term outcomes after renal transplantation. N Engl J Med. 2002; 346(8): 580-90[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments