Nephro-Urology Monthly

Published by: Kowsar

Molecular Pathways in Prostate Cancer

Evangelos Mazaris 1 and Alexios Tsiotras 1 , *
Authors Information
1 Urology Department, Lister Hospital, Stevenage, United Kingdom
Article information
  • Nephro-Urology Monthly: July 01, 2013, 5 (3); 792-800
  • Published Online: June 8, 2013
  • Article Type: Review Article
  • Received: December 2, 2012
  • Accepted: December 17, 2012
  • DOI: 10.5812/numonthly.9430

To Cite: Mazaris E, Tsiotras A. Molecular Pathways in Prostate Cancer, Nephro-Urol Mon. 2013 ; 5(3):792-800. doi: 10.5812/numonthly.9430.

Copyright © 2013, Nephrology and Urology Research Center. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Introduction
2. Objectives
3. Materials and Methods
4. Results
5. Conclusions
  • 1. Karan D, Lin MF, Johansson SL, Batra SK. Current status of the molecular genetics of human prostatic adenocarcinomas. Int J Cancer. 2003; 103(3): 285-93[DOI][PubMed]
  • 2. Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ. Cancer statistics, 2003. CA Cancer J Clin. 2003; 53(1): 5-26[PubMed]
  • 3. Gittes RF. Carcinoma of the prostate. N Engl J Med. 1991; 324(4): 236-45[DOI][PubMed]
  • 4. Carter BS, Bova GS, Beaty TH, Steinberg GD, Childs B, Isaacs WB, et al. Hereditary prostate cancer: epidemiologic and clinical features. J Urol. 1993; 150(3): 797-802[PubMed]
  • 5. Hughes C, Murphy A, Martin C, Sheils O, O'Leary J. Molecular pathology of prostate cancer. J Clin Pathol. 2005; 58(7): 673-84[DOI][PubMed]
  • 6. Narod SA, Dupont A, Cusan L, Diamond P, Gomez JL, Suburu R, et al. The impact of family history on early detection of prostate cancer. Nat Med. 1995; 1(2): 99-101[PubMed]
  • 7. Steinberg GD, Carter BS, Beaty TH, Childs B, Walsh PC. Family history and the risk of prostate cancer. Prostate. 1990; 17(4): 337-47[PubMed]
  • 8. Gronberg H, Damber L, Damber JE. Familial prostate cancer in Sweden. A nationwide register cohort study. Cancer. 1996; 77(1): 138-43[PubMed]
  • 9. Carter BS, Beaty TH, Steinberg GD, Childs B, Walsh PC. Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci U S A. 1992; 89(8): 3367-71[PubMed]
  • 10. Bratt O. Hereditary prostate cancer: clinical aspects. J Urol. 2002; 168(3): 906-13[DOI][PubMed]
  • 11. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, et al. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000; 343(2): 78-85[DOI][PubMed]
  • 12. Gronberg H, Damber L, Damber JE, Iselius L. Segregation analysis of prostate cancer in Sweden: support for dominant inheritance. Am J Epidemiol. 1997; 146(7): 552-7[PubMed]
  • 13. Schaid DJ, McDonnell SK, Blute ML, Thibodeau SN. Evidence for autosomal dominant inheritance of prostate cancer. Am J Hum Genet. 1998; 62(6): 1425-38[DOI][PubMed]
  • 14. Monroe KR, Yu MC, Kolonel LN, Coetzee GA, Wilkens LR, Ross RK, et al. Evidence of an X-linked or recessive genetic component to prostate cancer risk. Nat Med. 1995; 1(8): 827-9[PubMed]
  • 15. Smith JR, Freije D, Carpten JD, Gronberg H, Xu J, Isaacs SD, et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science. 1996; 274(5291): 1371-4[PubMed]
  • 16. Carpten J, Nupponen N, Isaacs S, Sood R, Robbins C, Xu J, et al. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet. 2002; 30(2): 181-4[DOI][PubMed]
  • 17. Rokman A, Ikonen T, Seppala EH, Nupponen N, Autio V, Mononen N, et al. Germline alterations of the RNASEL gene, a candidate HPC1 gene at 1q25, in patients and families with prostate cancer. Am J Hum Genet. 2002; 70(5): 1299-304[DOI][PubMed]
  • 18. Rennert H, Bercovich D, Hubert A, Abeliovich D, Rozovsky U, Bar-Shira A, et al. A novel founder mutation in the RNASEL gene, 471delAAAG, is associated with prostate cancer in Ashkenazi Jews. Am J Hum Genet. 2002; 71(4): 981-4[DOI][PubMed]
  • 19. Casey G, Neville PJ, Plummer SJ, Xiang Y, Krumroy LM, Klein EA, et al. RNASEL Arg462Gln variant is implicated in up to 13% of prostate cancer cases. Nat Genet. 2002; 32(4): 581-3[DOI][PubMed]
  • 20. Wang L, McDonnell SK, Elkins DA, Slager SL, Christensen E, Marks AF, et al. Analysis of the RNASEL gene in familial and sporadic prostate cancer. Am J Hum Genet. 2002; 71(1): 116-23[DOI][PubMed]
  • 21. Agalliu I, Leanza SM, Smith L, Trent JM, Carpten JD, Bailey-Wilson JE, et al. Contribution of HPC1 (RNASEL) and HPCX variants to prostate cancer in a founder population. Prostate. 2010; 70(15): 1716-27[DOI][PubMed]
  • 22. Nakazato H, Suzuki K, Matsui H, Ohtake N, Nakata S, Yamanaka H. Role of genetic polymorphisms of the RNASEL gene on familial prostate cancer risk in a Japanese population. Br J Cancer. 2003; 89(4): 691-6[DOI][PubMed]
  • 23. Downing SR, Hennessy KT, Abe M, Manola J, George DJ, Kantoff PW. Mutations in ribonuclease L gene do not occur at a greater frequency in patients with familial prostate cancer compared with patients with sporadic prostate cancer. Clin Prostate Cancer. 2003; 2(3): 177-80[PubMed]
  • 24. Cancel-Tassin G, Latil A, Valeri A, Mangin P, Fournier G, Berthon P, et al. PCAP is the major known prostate cancer predisposing locus in families from south and west Europe. Eur J Hum Genet. 2001; 9(2): 135-42[DOI][PubMed]
  • 25. Berthon P, Valeri A, Cohen-Akenine A, Drelon E, Paiss T, Wohr G, et al. Predisposing gene for early-onset prostate cancer, localized on chromosome 1q42.2-43. Am J Hum Genet. 1998; 62(6): 1416-24[PubMed]
  • 26. Xu J, Meyers D, Freije D, Isaacs S, Wiley K, Nusskern D, et al. Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat Genet. 1998; 20(2): 175-9[DOI][PubMed]
  • 27. Gibbs M, Stanford JL, McIndoe RA, Jarvik GP, Kolb S, Goode EL, et al. Evidence for a rare prostate cancer-susceptibility locus at chromosome 1p36. Am J Hum Genet. 1999; 64(3): 776-87[DOI][PubMed]
  • 28. Zheng SL, Xu J, Isaacs SD, Wiley K, Chang B, Bleecker ER, et al. Evidence for a prostate cancer linkage to chromosome 20 in 159 hereditary prostate cancer families. Hum Genet. 2001; 108(5): 430-5[PubMed]
  • 29. Berry R, Schroeder JJ, French AJ, McDonnell SK, Peterson BJ, Cunningham JM, et al. Evidence for a prostate cancer-susceptibility locus on chromosome 20. Am J Hum Genet. 2000; 67(1): 82-91[DOI][PubMed]
  • 30. Bock CH, Cunningham JM, McDonnell SK, Schaid DJ, Peterson BJ, Pavlic RJ, et al. Analysis of the prostate cancer-susceptibility locus HPC20 in 172 families affected by prostate cancer. Am J Hum Genet. 2001; 68(3): 795-801[DOI][PubMed]
  • 31. Rebbeck TR, Walker AH, Zeigler-Johnson C, Weisburg S, Martin AM, Nathanson KL, et al. Association of HPC2/ELAC2 genotypes and prostate cancer. Am J Hum Genet. 2000; 67(4): 1014-9[DOI][PubMed]
  • 32. Tavtigian SV, Simard J, Teng DH, Abtin V, Baumgard M, Beck A, et al. A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet. 2001; 27(2): 172-80[DOI][PubMed]
  • 33. Suarez BK, Gerhard DS, Lin J, Haberer B, Nguyen L, Kesterson NK, et al. Polymorphisms in the prostate cancer susceptibility gene HPC2/ELAC2 in multiplex families and healthy controls. Cancer Res. 2001; 61(13): 4982-4[PubMed]
  • 34. Xu J, Zheng SL, Carpten JD, Nupponen NN, Robbins CM, Mestre J, et al. Evaluation of linkage and association of HPC2/ELAC2 in patients with familial or sporadic prostate cancer. Am J Hum Genet. 2001; 68(4): 901-11[PubMed]
  • 35. Robbins CM, Hernandez W, Ahaghotu C, Bennett J, Hoke G, Mason T, et al. Association of HPC2/ELAC2 and RNASEL non-synonymous variants with prostate cancer risk in African American familial and sporadic cases. Prostate. 2008; 68(16): 1790-7[DOI][PubMed]
  • 36. Meitz JC, Edwards SM, Easton DF, Murkin A, Ardern-Jones A, Jackson RA, et al. HPC2/ELAC2 polymorphisms and prostate cancer risk: analysis by age of onset of disease. Br J Cancer. 2002; 87(8): 905-8[DOI][PubMed]
  • 37. Suarez BK, Lin J, Burmester JK, Broman KW, Weber JL, Banerjee TK, et al. A genome screen of multiplex sibships with prostate cancer. Am J Hum Genet. 2000; 66(3): 933-44[DOI][PubMed]
  • 38. Chang BL, Zheng SL, Hawkins GA, Isaacs SD, Wiley KE, Turner A, et al. Joint effect of HSD3B1 and HSD3B2 genes is associated with hereditary and sporadic prostate cancer susceptibility. Cancer Res. 2002; 62(6): 1784-9[PubMed]
  • 39. Xu J, Zheng SL, Komiya A, Mychaleckyj JC, Isaacs SD, Hu JJ, et al. Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nat Genet. 2002; 32(2): 321-5[DOI][PubMed]
  • 40. Dejager S, Mietus-Snyder M, Friera A, Pitas RE. Dominant negative mutations of the scavenger receptor. Native receptor inactivation by expression of truncated variants. J Clin Invest. 1993; 92(2): 894-902[DOI][PubMed]
  • 41. Wang L, McDonnell SK, Cunningham JM, Hebbring S, Jacobsen SJ, Cerhan JR, et al. No association of germline alteration of MSR1 with prostate cancer risk. Nat Genet. 2003; 35(2): 128-9[DOI][PubMed]
  • 42. Demuth I, Frappart PO, Hildebrand G, Melchers A, Lobitz S, Stockl L, et al. An inducible null mutant murine model of Nijmegen breakage syndrome proves the essential function of NBS1 in chromosomal stability and cell viability. Hum Mol Genet. 2004; 13(20): 2385-97[DOI][PubMed]
  • 43. Cybulski C, Gorski B, Debniak T, Gliniewicz B, Mierzejewski M, Masojc B, et al. NBS1 is a prostate cancer susceptibility gene. Cancer Res. 2004; 64(4): 1215-9[PubMed]
  • 44. Hebbring SJ, Fredriksson H, White KA, Maier C, Ewing C, McDonnell SK, et al. Role of the Nijmegen breakage syndrome 1 gene in familial and sporadic prostate cancer. Cancer Epidemiol Biomarkers Prev. 2006; 15(5): 935-8[DOI][PubMed]
  • 45. Dong X, Wang L, Taniguchi K, Wang X, Cunningham JM, McDonnell SK, et al. Mutations in CHEK2 associated with prostate cancer risk. Am J Hum Genet. 2003; 72(2): 270-80[DOI][PubMed]
  • 46. Cybulski C, Huzarski T, Gorski B, Masojc B, Mierzejewski M, Debniak T, et al. A novel founder CHEK2 mutation is associated with increased prostate cancer risk. Cancer Res. 2004; 64(8): 2677-9[PubMed]
  • 47. DeMarzo AM, Nelson WG, Isaacs WB, Epstein JI. Pathological and molecular aspects of prostate cancer. Lancet. 2003; 361(9361): 955-64[DOI][PubMed]
  • 48. Knudson AG, Jr. Genetic predisposition to cancer. Cancer Detect Prev. 1984; 7(1): 1-8[PubMed]
  • 49. Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet. 1999; 21(2): 163-7[DOI][PubMed]
  • 50. Bookstein R, Totowa NJ. Prostate cancer: biology genetics and the new therapeutics. 2001; : 61-93
  • 51. Bookstein R, MacGrogan D, Hilsenbeck SG, Sharkey F, Allred DC. p53 is mutated in a subset of advanced-stage prostate cancers. Cancer Res. 1993; 53(14): 3369-73[PubMed]
  • 52. Navone NM, Labate ME, Troncoso P, Pisters LL, Conti CJ, von Eschenbach AC, et al. p53 mutations in prostate cancer bone metastases suggest that selected p53 mutants in the primary site define foci with metastatic potential. J Urol. 1999; 161(1): 304-8[PubMed]
  • 53. Voeller HJ, Sugars LY, Pretlow T, Gelmann EP. p53 oncogene mutations in human prostate cancer specimens. J Urol. 1994; 151(2): 492-5[PubMed]
  • 54. Grignon DJ, Caplan R, Sarkar FH, Lawton CA, Hammond EH, Pilepich MV, et al. p53 status and prognosis of locally advanced prostatic adenocarcinoma: a study based on RTOG 8610. J Natl Cancer Inst. 1997; 89(2): 158-65[PubMed]
  • 55. Rogler A, Rogenhofer M, Borchardt A, Lunz JC, Knoell A, Hofstaedter F, et al. P53 codon 72 (Arg72Pro) polymorphism and prostate cancer risk: association between disease onset and proline genotype. Pathobiology. 2011; 78(4): 193-200[DOI][PubMed]
  • 56. Feilotter HE, Nagai MA, Boag AH, Eng C, Mulligan LM. Analysis of PTEN and the 10q23 region in primary prostate carcinomas. Oncogene. 1998; 16(13): 1743-8[DOI][PubMed]
  • 57. Suzuki H, Freije D, Nusskern DR, Okami K, Cairns P, Sidransky D, et al. Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res. 1998; 58(2): 204-9[PubMed]
  • 58. Wang SI, Parsons R, Ittmann M. Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas. Clin Cancer Res. 1998; 4(3): 811-5[PubMed]
  • 59. Sun H, Lesche R, Li DM, Liliental J, Zhang H, Gao J, et al. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci U S A. 1999; 96(11): 6199-204[PubMed]
  • 60. Haiman CA, Stram DO, Cheng I, Giorgi EE, Pooler L, Penney K, et al. Common genetic variation at PTEN and risk of sporadic breast and prostate cancer. Cancer Epidemiol Biomarkers Prev. 2006; 15(5): 1021-5[DOI][PubMed]
  • 61. Xie CC, Lu L, Sun J, Zheng SL, Isaacs WB, Gronberg H, et al. Germ-line sequence variants of PTEN do not have an important role in hereditary and non-hereditary prostate cancer susceptibility. J Hum Genet. 2011; 56(7): 496-502[DOI][PubMed]
  • 62. Cote RJ, Shi Y, Groshen S, Feng AC, Cordon-Cardo C, Skinner D, et al. Association of p27Kip1 levels with recurrence and survival in patients with stage C prostate carcinoma. J Natl Cancer Inst. 1998; 90(12): 916-20[PubMed]
  • 63. De Marzo AM, Meeker AK, Epstein JI, Coffey DS. Prostate stem cell compartments: expression of the cell cycle inhibitor p27Kip1 in normal, hyperplastic, and neoplastic cells. Am J Pathol. 1998; 153(3): 911-9[DOI][PubMed]
  • 64. Cheville JC, Lloyd RV, Sebo TJ, Cheng L, Erickson L, Bostwick DG, et al. Expression of p27kip1 in prostatic adenocarcinoma. Mod Pathol. 1998; 11(4): 324-8[PubMed]
  • 65. Guo Y, Sklar GN, Borkowski A, Kyprianou N. Loss of the cyclin-dependent kinase inhibitor p27(Kip1) protein in human prostate cancer correlates with tumor grade. Clin Cancer Res. 1997; 3(12 Pt 1): 2269-74[PubMed]
  • 66. Kibel AS, Faith DA, Bova GS, Isaacs WB. Loss of heterozygosity at 12P12-13 in primary and metastatic prostate adenocarcinoma. J Urol. 2000; 164(1): 192-6[PubMed]
  • 67. Bubendorf L, Kononen J, Koivisto P, Schraml P, Moch H, Gasser TC, et al. Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Res. 1999; 59(4): 803-6[PubMed]
  • 68. Van Den Berg C, Guan XY, Von Hoff D, Jenkins R, Griffin C, et al. DNA sequence amplification in human prostate cancer identified by chromosome microdissection: potential prognostic implications. Clin Cancer Res. 1995; 1(1): 11-8[PubMed]
  • 69. Chen H, Nandi AK, Li X, Bieberich CJ. NKX-3.1 interacts with prostate-derived Ets factor and regulates the activity of the PSA promoter. Cancer Res. 2002; 62(2): 338-40[PubMed]
  • 70. He WW, Sciavolino PJ, Wing J, Augustus M, Hudson P, Meissner PS, et al. A novel human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics. 1997; 43(1): 69-77[DOI][PubMed]
  • 71. Bowen C, Bubendorf L, Voeller HJ, Slack R, Willi N, Sauter G, et al. Loss of NKX3.1 expression in human prostate cancers correlates with tumor progression. Cancer Res. 2000; 60(21): 6111-5[PubMed]
  • 72. Ittmann MM, Wieczorek R. Alterations of the retinoblastoma gene in clinically localized, stage B prostate adenocarcinomas. Hum Pathol. 1996; 27(1): 28-34[PubMed]
  • 73. Phillips SM, Barton CM, Lee SJ, Morton DG, Wallace DM, Lemoine NR, et al. Loss of the retinoblastoma susceptibility gene (RB1) is a frequent and early event in prostatic tumorigenesis. Br J Cancer. 1994; 70(6): 1252-7[PubMed]
  • 74. Cooney KA, Wetzel JC, Merajver SD, Macoska JA, Singleton TP, Wojno KJ. Distinct regions of allelic loss on 13q in prostate cancer. Cancer Res. 1996; 56(5): 1142-5[PubMed]
  • 75. Li C, Larsson C, Futreal A, Lancaster J, Phelan C, Aspenblad U, et al. Identification of two distinct deleted regions on chromosome 13 in prostate cancer. Oncogene. 1998; 16(4): 481-7[DOI][PubMed]
  • 76. Bowen C, Spiegel S, Gelmann EP. Radiation-induced apoptosis mediated by retinoblastoma protein. Cancer Res. 1998; 58(15): 3275-81[PubMed]
  • 77. Nelson WG, De Marzo AM, Deweese TL, Lin X, Brooks JD, Putzi MJ, et al. Preneoplastic prostate lesions: an opportunity for prostate cancer prevention. Ann N Y Acad Sci. 2001; 952: 135-44[PubMed]
  • 78. Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS, et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci U S A. 1994; 91(24): 11733-7[PubMed]
  • 79. Millar DS, Ow KK, Paul CL, Russell PJ, Molloy PL, Clark SJ. Detailed methylation analysis of the glutathione S-transferase pi (GSTP1) gene in prostate cancer. Oncogene. 1999; 18(6): 1313-24[DOI][PubMed]
  • 80. Debes JD, Yokomizo A, McDonnell SK, Hebbring SJ, Christensen GB, Cunningham JM, et al. Gluthatione-S-transferase P1 polymorphism I105V in familial and sporadic prostate cancer. Cancer Genet Cytogenet. 2004; 155(1): 82-6[DOI][PubMed]
  • 81. Harden SV, Guo Z, Epstein JI, Sidransky D. Quantitative GSTP1 methylation clearly distinguishes benign prostatic tissue and limited prostate adenocarcinoma. J Urol. 2003; 169(3): 1138-42[DOI][PubMed]
  • 82. Narla G, Heath KE, Reeves HL, Li D, Giono LE, Kimmelman AC, et al. KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science. 2001; 294(5551): 2563-6[DOI][PubMed]
  • 83. Chen C, Hyytinen ER, Sun X, Helin HJ, Koivisto PA, Frierson HF, Jr, et al. Deletion, mutation, and loss of expression of KLF6 in human prostate cancer. Am J Pathol. 2003; 162(4): 1349-54[DOI][PubMed]
  • 84. Jarrard DF, Bova GS, Ewing CM, Pin SS, Nguyen SH, Baylin SB, et al. Deletional, mutational, and methylation analyses of CDKN2 (p16/MTS1) in primary and metastatic prostate cancer. Genes Chromosomes Cancer. 1997; 19(2): 90-6[PubMed]
  • 85. Sun X, Frierson HF, Chen C, Li C, Ran Q, Otto KB, et al. Frequent somatic mutations of the transcription factor ATBF1 in human prostate cancer. Nat Genet. 2005; 37(4): 407-12[DOI][PubMed]
  • 86. Yasuda H, Mizuno A, Tamaoki T, Morinaga T. ATBF1, a multiple-homeodomain zinc finger protein, selectively down-regulates AT-rich elements of the human alpha-fetoprotein gene. Mol Cell Biol. 1994; 14(2): 1395-401[PubMed]
  • 87. Liu JW, Shen JJ, Tanzillo-Swarts A, Bhatia B, Maldonado CM, Person MD, et al. Annexin II expression is reduced or lost in prostate cancer cells and its re-expression inhibits prostate cancer cell migration. Oncogene. 2003; 22(10): 1475-85[DOI][PubMed]
  • 88. Xin W, Rhodes DR, Ingold C, Chinnaiyan AM, Rubin MA. Dysregulation of the annexin family protein family is associated with prostate cancer progression. Am J Pathol. 2003; 162(1): 255-61[DOI][PubMed]
  • 89. Thompson EB. The many roles of c-Myc in apoptosis. Annu Rev Physiol. 1998; 60: 575-600[DOI][PubMed]
  • 90. Nupponen NN, Kakkola L, Koivisto P, Visakorpi T. Genetic alterations in hormone-refractory recurrent prostate carcinomas. Am J Pathol. 1998; 153(1): 141-8[DOI][PubMed]
  • 91. Sato K, Qian J, Slezak JM, Lieber MM, Bostwick DG, Bergstralh EJ, et al. Clinical significance of alterations of chromosome 8 in high-grade, advanced, nonmetastatic prostate carcinoma. J Natl Cancer Inst. 1999; 91(18): 1574-80[PubMed]
  • 92. Sanchez KM, Sweeney CJ, Mass R, Koch MO, Eckert GJ, Geary WA, et al. Evaluation of HER-2/neu expression in prostatic adenocarcinoma: a requested for a standardized, organ specific methodology. Cancer. 2002; 95(8): 1650-5[DOI][PubMed]
  • 93. Signoretti S, Montironi R, Manola J, Altimari A, Tam C, Bubley G, et al. Her-2-neu expression and progression toward androgen independence in human prostate cancer. J Natl Cancer Inst. 2000; 92(23): 1918-25[PubMed]
  • 94. Lara PN, Jr, Meyers FJ, Gray CR, Edwards RG, Gumerlock PH, Kauderer C, et al. HER-2/neu is overexpressed infrequently in patients with prostate carcinoma. Results from the California Cancer Consortium Screening Trial. Cancer. 2002; 94(10): 2584-9[PubMed]
  • 95. Calvo BF, Levine AM, Marcos M, Collins QF, Iacocca MV, Caskey LS, et al. Human epidermal receptor-2 expression in prostate cancer. Clin Cancer Res. 2003; 9(3): 1087-97[PubMed]
  • 96. Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 1988; 335(6189): 440-2[DOI][PubMed]
  • 97. Catz SD, Johnson JL. BCL-2 in prostate cancer: a minireview. Apoptosis. 2003; 8(1): 29-37[PubMed]
  • 98. McDonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LW, Hsieh JT, et al. Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res. 1992; 52(24): 6940-4[PubMed]
  • 99. Fuzio P, Ditonno P, Lucarelli G, Battaglia M, Bettocchi C, Senia T, et al. Androgen deprivation therapy affects BCL-2 expression in human prostate cancer. Int J Oncol. 2011; 39(5): 1233-42[DOI][PubMed]
  • 100. Dong JT, Isaacs WB, Isaacs JT. Molecular advances in prostate cancer. Curr Opin Oncol. 1997; 9(1): 101-7[PubMed]
  • 101. Raffo AJ, Perlman H, Chen MW, Day ML, Streitman JS, Buttyan R. Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res. 1995; 55(19): 4438-45[PubMed]
  • 102. Reiter RE, Gu Z, Watabe T, Thomas G, Szigeti K, Davis E, et al. Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc Natl Acad Sci U S A. 1998; 95(4): 1735-40[PubMed]
  • 103. Gu Z, Thomas G, Yamashiro J, Shintaku IP, Dorey F, Raitano A, et al. Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene. 2000; 19(10): 1288-96[DOI][PubMed]
  • 104. Saffran DC, Raitano AB, Hubert RS, Witte ON, Reiter RE, Jakobovits A. Anti-PSCA mAbs inhibit tumor growth and metastasis formation and prolong the survival of mice bearing human prostate cancer xenografts. Proc Natl Acad Sci U S A. 2001; 98(5): 2658-63[DOI][PubMed]
  • 105. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005; 310(5748): 644-8[DOI][PubMed]
  • 106. Falzarano SM, Zhou M, Carver P, Tsuzuki T, Simmerman K, He H, et al. ERG gene rearrangement status in prostate cancer detected by immunohistochemistry. Virchows Arch. 2011; 459(4): 441-7[DOI][PubMed]
  • 107. Flajollet S, Tian TV, Flourens A, Tomavo N, Villers A, Bonnelye E, et al. Abnormal expression of the ERG transcription factor in prostate cancer cells activates osteopontin. Mol Cancer Res. 2011; 9(7): 914-24[DOI][PubMed]
  • 108. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, et al. Delineation of prognostic biomarkers in prostate cancer. Nature. 2001; 412(6849): 822-6[DOI][PubMed]
  • 109. Rubin MA, Zhou M, Dhanasekaran SM, Varambally S, Barrette TR, Sanda MG, et al. alpha-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA. 2002; 287(13): 1662-70[PubMed]
  • 110. Luo J, Zha S, Gage WR, Dunn TA, Hicks JL, Bennett CJ, et al. Alpha-methylacyl-CoA racemase: a new molecular marker for prostate cancer. Cancer Res. 2002; 62(8): 2220-6[PubMed]
  • 111. Shand RL, Gelmann EP. Molecular biology of prostate-cancer pathogenesis. Curr Opin Urol. 2006; 16(3): 123-31[DOI][PubMed]
  • 112. Porkka KP, Visakorpi T. Molecular mechanisms of prostate cancer. Eur Urol. 2004; 45(6): 683-91[DOI][PubMed]
  • 113. Taplin ME, Bubley GJ, Shuster TD, Frantz ME, Spooner AE, Ogata GK, et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med. 1995; 332(21): 1393-8[DOI][PubMed]
  • 114. Zeegers MP, Kiemeney LA, Nieder AM, Ostrer H. How strong is the association between CAG and GGN repeat length polymorphisms in the androgen receptor gene and prostate cancer risk? Cancer Epidemiol Biomarkers Prev. 2004; 13(11 Pt 1): 1765-71[PubMed]
  • 115. Castagnetta LA, Carruba G. Human prostate cancer: a direct role for oestrogens. Ciba Found Symp. 1995; 191: 269-86[PubMed]
  • 116. Gonzalgo ML, Isaacs WB. Molecular pathways to prostate cancer. J Urol. 2003; 170(6 Pt 1): 2444-52[DOI][PubMed]
  • 117. Keshava C, McCanlies EC, Weston A. CYP3A4 polymorphisms--potential risk factors for breast and prostate cancer: a HuGE review. Am J Epidemiol. 2004; 160(9): 825-41[DOI][PubMed]
  • 118. Cicek MS, Liu X, Schumacher FR, Casey G, Witte JS. Vitamin D receptor genotypes/haplotypes and prostate cancer risk. Cancer Epidemiol Biomarkers Prev. 2006; 15(12): 2549-52[DOI][PubMed]
  • 119. Seth D, Shaw K, Jazayeri J, Leedman PJ. Complex post-transcriptional regulation of EGF-receptor expression by EGF and TGF-alpha in human prostate cancer cells. Br J Cancer. 1999; 80(5-6): 657-69[DOI][PubMed]
  • 120. Chan JM, Stampfer MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P, et al. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science. 1998; 279(5350): 563-6[PubMed]
  • 121. Park JI, Lee MG, Cho K, Park BJ, Chae KS, Byun DS, et al. Transforming growth factor-beta1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways. Oncogene. 2003; 22(28): 4314-32[DOI][PubMed]
  • 122. Harper ME, Glynne-Jones E, Goddard L, Thurston VJ, Griffiths K. Vascular endothelial growth factor (VEGF) expression in prostatic tumours and its relationship to neuroendocrine cells. Br J Cancer. 1996; 74(6): 910-6[PubMed]
  • 123. Paronetto MP, Farini D, Sammarco I, Maturo G, Vespasiani G, Geremia R, et al. Expression of a truncated form of the c-Kit tyrosine kinase receptor and activation of Src kinase in human prostatic cancer. Am J Pathol. 2004; 164(4): 1243-51[DOI][PubMed]
  • 124. Kazansky AV, Spencer DM, Greenberg NM. Activation of signal transducer and activator of transcription 5 is required for progression of autochthonous prostate cancer: evidence from the transgenic adenocarcinoma of the mouse prostate system. Cancer Res. 2003; 63(24): 8757-62
  • 125. Li H, Ahonen TJ, Alanen K, Xie J, LeBaron MJ, Pretlow TG, et al. Activation of signal transducer and activator of transcription 5 in human prostate cancer is associated with high histological grade. Cancer Res. 2004; 64(14): 4774-82[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments