Nephro-Urology Monthly

Published by: Kowsar

Erythrocyte Alterations and Increased Cardiovascular Risk in Chronic Renal Failure

Mario Bonomini 1 , * , Assunta Pandolfi 2 , Vittorio Sirolli 1 , Arduino Arduini 3 , Lorenzo Di Liberato 1 and Natalia Di Pietro 2
Authors Information
1 Unit of Nephrology and Dialysis, Department of Medicine, “SS. Annunziata” University Hospital, Chieti, Italy
2 Aging Research Center and Translational Medicine CeSI-MeT, “G. d’Annunzio” University, Chieti-Pescara, Italy
3 Department of Research and Development, Core Quest Sagl, Tecnopolo, Manno, Switzerland
Article information
  • Nephro-Urology Monthly: May 2017, 9 (3); e45866
  • Published Online: April 26, 2017
  • Article Type: Review Article
  • Received: January 25, 2017
  • Accepted: March 3, 2017
  • DOI: 10.5812/numonthly.45866

To Cite: Bonomini M, Pandolfi A, Sirolli V, Arduini A, Liberato L D, et al. Erythrocyte Alterations and Increased Cardiovascular Risk in Chronic Renal Failure, Nephro-Urol Mon. 2017 ;9(3):e45866. doi: 10.5812/numonthly.45866.

Copyright © 2017, Nephrology and Urology Research Center. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Evidence Acquisition
3. Results
4. Conclusions
  • 1. Go AS. Cardiovascular Disease Consequences of CKD. Semin Nephrol. 2016; 36(4): 293-304[DOI][PubMed]
  • 2. Parikh NI, Hwang SJ, Larson MG, Meigs JB, Levy D, Fox CS. Cardiovascular disease risk factors in chronic kidney disease: overall burden and rates of treatment and control. Arch Intern Med. 2006; 166(17): 1884-91[DOI][PubMed]
  • 3. Zoccali C. Cardiovascular risk in uraemic patients-is it fully explained by classical risk factors? Nephrol Dial Transplant. 2000; 15(4): 454-7[DOI][PubMed]
  • 4. van der Zee S, Baber U, Elmariah S, Winston J, Fuster V. Cardiovascular risk factors in patients with chronic kidney disease. Nat Rev Cardiol. 2009; 6(9): 580-9[DOI][PubMed]
  • 5. Kikuchi Y, Koyama T, Koyama Y, Tozawa S, Arai T, Horimoto M, et al. Red blood cell deformability in renal failure. Nephron. 1982; 30(1): 8-14[DOI][PubMed]
  • 6. Fisher DJ, Burton DT, Yonkos LT, Turley SD, Ziegler GP, Turley BS. Derivation of acute ecological risk criteria for chlorite in freshwater ecosystems. Water Res. 2003; 37(18): 4359-68[DOI][PubMed]
  • 7. Ly J, Marticorena R, Donnelly S. Red blood cell survival in chronic renal failure. Am J Kidney Dis. 2004; 44(4): 715-9[DOI][PubMed]
  • 8. Bonomini M, Sirolli V. Uremic toxicity and anemia. J Nephrol. 2003; 16(1): 21-8[PubMed]
  • 9. Joske RA, McAlister JM, Prankerd TA. Isotope investigations of red cell production and destruction in chronic renal disease. Clin Sci. 1956; 15(4): 511-22[PubMed]
  • 10. Bonomini M, Zammit V, Pusey CD, De Vecchi A, Arduini A. Pharmacological use of L-carnitine in uremic anemia: has its full potential been exploited? Pharmacol Res. 2011; 63(3): 157-64[DOI][PubMed]
  • 11. Costa E, Rocha S, Rocha-Pereira P, Castro E, Miranda V, do Sameiro Faria M, et al. Altered erythrocyte membrane protein composition in chronic kidney disease stage 5 patients under haemodialysis and recombinant human erythropoietin therapy. Blood Purif. 2008; 26(3): 267-73[DOI][PubMed]
  • 12. Alvarez-Llamas G, Zubiri I, Maroto AS, de la Cuesta F, Posada-Ayala M, Martin-Lorenzo M, et al. A role for the membrane proteome in human chronic kidney disease erythrocytes. Transl Res. 2012; 160(5): 374-83[DOI][PubMed]
  • 13. Evans EA, Hochmuth RM. Membrane viscoelasticity. Biophys J. 1976; 16(1): 1-11[DOI][PubMed]
  • 14. Linde T, Sandhagen B, Wikstrom B, Danielson BG. The required dose of erythropoietin during renal anaemia treatment is related to the degree of impairment in erythrocyte deformability. Nephrol Dial Transplant. 1997; 12(11): 2375-9[DOI][PubMed]
  • 15. Arduini A, Rossi M, Mancinelli G, Belfiglio M, Scurti R, Radatti G, et al. Effect of L-carnitine and acetyl-L-carnitine on the human erythrocyte membrane stability and deformability. Life Sci. 1990; 47(26): 2395-400[DOI][PubMed]
  • 16. Butterfield DA, Rangachari A. Acetylcarnitine increases membrane cytoskeletal protein-protein interactions. Life Sci. 1993; 52(3): 297-303[DOI][PubMed]
  • 17. Gonzalez AM, Yazici I, Kusza K, Siemionow M. Effects of fresh versus banked blood transfusions on microcirculatory hemodynamics and tissue oxygenation in the rat cremaster model. Surgery. 2007; 141(5): 630-9[DOI][PubMed]
  • 18. Hoehn RS, Jernigan PL, Chang AL, Edwards MJ, Pritts TA. Molecular mechanisms of erythrocyte aging. Biol Chem. 2015; 396(6-7): 621-31[DOI][PubMed]
  • 19. Georgatzakou HT, Antonelou MH, Papassideri IS, Kriebardis AG. Red blood cell abnormalities and the pathogenesis of anemia in end-stage renal disease. Proteomics Clin Appl. 2016; 10(8): 778-90[DOI][PubMed]
  • 20. Zwaal RF, Schroit AJ. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood. 1997; 89(4): 1121-32[PubMed]
  • 21. Schroit AJ, Madsen JW, Tanaka Y. In vivo recognition and clearance of red blood cells containing phosphatidylserine in their plasma membranes. J Biol Chem. 1985; 260(8): 5131-8[PubMed]
  • 22. Lang E, Qadri SM, Lang F. Killing me softly - suicidal erythrocyte death. Int J Biochem Cell Biol. 2012; 44(8): 1236-43[DOI][PubMed]
  • 23. Wood BL, Gibson DF, Tait JF. Increased erythrocyte phosphatidylserine exposure in sickle cell disease: flow-cytometric measurement and clinical associations. Blood. 1996; 88(5): 1873-80[PubMed]
  • 24. Bonomini M, Sirolli V, Settefrati N, Dottori S, Di Liberato L, Arduini A. Increased erythrocyte phosphatidylserine exposure in chronic renal failure. J Am Soc Nephrol. 1999; 10(9): 1982-90[PubMed]
  • 25. Pavone B, Bucci S, Sirolli V, Merlini G, Del Boccio P, Di Rienzo M, et al. Beta2-microglobulin causes abnormal phosphatidylserine exposure in human red blood cells. Mol Biosyst. 2011; 7(3): 651-8[DOI][PubMed]
  • 26. Ahmed MS, Langer H, Abed M, Voelkl J, Lang F. The uremic toxin acrolein promotes suicidal erythrocyte death. Kidney Blood Press Res. 2013; 37(2-3): 158-67[DOI][PubMed]
  • 27. Ahmed MS, Abed M, Voelkl J, Lang F. Triggering of suicidal erythrocyte death by uremic toxin indoxyl sulfate. BMC Nephrol. 2013; 14: 244[DOI][PubMed]
  • 28. Bonomini M, Ballone E, Di Stante S, Bucciarelli T, Dottori S, Arduini A, et al. Removal of uraemic plasma factor(s) using different dialysis modalities reduces phosphatidylserine exposure in red blood cells. Nephrol Dial Transplant. 2004; 19(1): 68-74[DOI][PubMed]
  • 29. Sun Y, Liu G, Li X, Shi Y, Guan G. L-Carnitine inhibits eryptosis induced by uremic serum and the related mechanisms. Ren Fail. 2015; 37(6): 1050-6[DOI][PubMed]
  • 30. Arduini A, Bonomini M, Clutterbuck EJ, Laffan MA, Pusey CD. Effect of L-carnitine administration on erythrocyte survival in haemodialysis patients. Nephrol Dial Transplant. 2006; 21(9): 2671-2[DOI][PubMed]
  • 31. Kong QY, Wu X, Li J, Peng WX, Ye R, Lindholm B, et al. Loss of phospholipids asymmetry in red blood cells contributes to anemia in uremic patients. Adv Perit Dial. 2001; 17: 58-60[PubMed]
  • 32. Bonomini M, Sirolli V, Reale M, Arduini A. Involvement of phosphatidylserine exposure in the recognition and phagocytosis of uremic erythrocytes. Am J Kidney Dis. 2001; 37(4): 807-14[PubMed]
  • 33. Kalicki RM, Uehlinger DE. Red cell survival in relation to changes in the hematocrit: more important than you think. Blood Purif. 2008; 26(4): 355-60[DOI][PubMed]
  • 34. Kalantar-Zadeh K, Aronoff GR. Hemoglobin variability in anemia of chronic kidney disease. J Am Soc Nephrol. 2009; 20(3): 479-87[DOI][PubMed]
  • 35. Yang W, Israni RK, Brunelli SM, Joffe MM, Fishbane S, Feldman HI. Hemoglobin variability and mortality in ESRD. J Am Soc Nephrol. 2007; 18(12): 3164-70[DOI][PubMed]
  • 36. Vance JE, Steenbergen R. Metabolism and functions of phosphatidylserine. Prog Lipid Res. 2005; 44(4): 207-34[DOI][PubMed]
  • 37. Helley D, Eldor A, Girot R, Ducrocq R, Guillin MC, Bezeaud A. Increased procoagulant activity of red blood cells from patients with homozygous sickle cell disease and beta-thalassemia. Thromb Haemost. 1996; 76(3): 322-7[PubMed]
  • 38. Pavord S, Myers B. Bleeding and thrombotic complications of kidney disease. Blood Rev. 2011; 25(6): 271-8[DOI][PubMed]
  • 39. Shashar M, Francis J, Chitalia V. Thrombosis in the uremic milieu--emerging role of "thrombolome". Semin Dial. 2015; 28(2): 198-205[DOI][PubMed]
  • 40. Gao C, Xie R, Yu C, Ma R, Dong W, Meng H, et al. Thrombotic Role of Blood and Endothelial Cells in Uremia through Phosphatidylserine Exposure and Microparticle Release. PLoS One. 2015; 10(11)[DOI][PubMed]
  • 41. Bonomini M, Sirolli V, Merciaro G, Antidormi T, Di Liberato L, Brummer U, et al. Red blood cells may contribute to hypercoagulability in uraemia via enhanced surface exposure of phosphatidylserine. Nephrol Dial Transplant. 2005; 20(2): 361-6[DOI][PubMed]
  • 42. Locatelli F, Canaud B, Eckardt KU, Stenvinkel P, Wanner C, Zoccali C. Oxidative stress in end-stage renal disease: an emerging threat to patient outcome. Nephrol Dial Transplant. 2003; 18(7): 1272-80[DOI][PubMed]
  • 43. Kao MP, Ang DS, Pall A, Struthers AD. Oxidative stress in renal dysfunction: mechanisms, clinical sequelae and therapeutic options. J Hum Hypertens. 2010; 24(1): 1-8[DOI][PubMed]
  • 44. D'Agnillo F, Alayash AI. Redox cycling of diaspirin cross-linked hemoglobin induces G2/M arrest and apoptosis in cultured endothelial cells. Blood. 2001; 98(12): 3315-23[DOI][PubMed]
  • 45. Kaysen GA. The microinflammatory state in uremia: causes and potential consequences. J Am Soc Nephrol. 2001; 12(7): 1549-57[PubMed]
  • 46. Hansson GK. Inflammatory mechanisms in atherosclerosis. J Thromb Haemost. 2009; 7 Suppl 1: 328-31[DOI][PubMed]
  • 47. Di Pietro N, Formoso G, Pandolfi A. Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis. Vascul Pharmacol. 2016; 84: 1-7[DOI][PubMed]
  • 48. Ayala A, Munoz MF, Arguelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014; 2014: 360438[DOI][PubMed]
  • 49. Sindhu RK, Ehdaie A, Farmand F, Dhaliwal KK, Nguyen T, Zhan CD, et al. Expression of catalase and glutathione peroxidase in renal insufficiency. Biochim Biophys Acta. 2005; 1743(1-2): 86-92[DOI][PubMed]
  • 50. Bargnoux AS, Cristol JP, Jaussent I, Chalabi L, Bories P, Dion JJ, et al. Vitamin E-coated polysulfone membrane improved red blood cell antioxidant status in hemodialysis patients. J Nephrol. 2013; 26(3): 556-63[DOI][PubMed]
  • 51. Kobayashi S, Moriya H, Aso K, Ohtake T. Vitamin E-bonded hemodialyzer improves atherosclerosis associated with a rheological improvement of circulating red blood cells. Kidney Int. 2003; 63(5): 1881-7[DOI][PubMed]
  • 52. Yang CC, Hsu SP, Wu MS, Hsu SM, Chien CT. Effects of vitamin C infusion and vitamin E-coated membrane on hemodialysis-induced oxidative stress. Kidney Int. 2006; 69(4): 706-14[DOI][PubMed]
  • 53. Bober J, Kedzierska K, Kwiatkowska E, Stachowska E, Golembiewska E, Mazur O, et al. Does oxidative stress affect the activity of the sodium-proton exchanger? Ann Acad Med Stetin. 2010; 56(3): 5-12[PubMed]
  • 54. Usberti M, Lima G, Arisi M, Bufano G, D'Avanzo L, Gazzotti RM. Effect of exogenous reduced glutathione on the survival of red blood cells in hemodialyzed patients. J Nephrol. 1997; 10(5): 261-5[PubMed]
  • 55. Giray B, Kan E, Bali M, Hincal F, Basaran N. The effect of vitamin E supplementation on antioxidant enzyme activities and lipid peroxidation levels in hemodialysis patients. Clin Chim Acta. 2003; 338(1-2): 91-8[PubMed]
  • 56. Uzum A, Toprak O, Gumustas MK, Ciftci S, Sen S. Effect of vitamin E therapy on oxidative stress and erythrocyte osmotic fragility in patients on peritoneal dialysis and hemodialysis. J Nephrol. 2006; 19(6): 739-45[PubMed]
  • 57. Chen CK, Liaw JM, Juang JG, Lin TH. Antioxidant enzymes and trace elements in hemodialyzed patients. Biol Trace Elem Res. 1997; 58(1-2): 149-57[DOI][PubMed]
  • 58. Michel T, Feron O. Nitric oxide synthases: which, where, how, and why? J Clin Invest. 1997; 100(9): 2146-52[DOI][PubMed]
  • 59. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987; 327(6122): 524-6[DOI][PubMed]
  • 60. Behrendt D, Ganz P. Endothelial function. From vascular biology to clinical applications. Am J Cardiol. 2002; 90(10C): 40L-8L[DOI][PubMed]
  • 61. Morris ST, Jardine AG. The vascular endothelium in chronic renal failure. J Nephrol. 2000; 13(2): 96-105[PubMed]
  • 62. Bonomini M, Reale M, Santarelli P, Stuard S, Settefrati N, Albertazzi A. Serum levels of soluble adhesion molecules in chronic renal failure and dialysis patients. Nephron. 1998; 79(4): 399-407[DOI][PubMed]
  • 63. Stam F, van Guldener C, Schalkwijk CG, ter Wee PM, Donker AJ, Stehouwer CD. Impaired renal function is associated with markers of endothelial dysfunction and increased inflammatory activity. Nephrol Dial Transplant. 2003; 18(5): 892-8[DOI][PubMed]
  • 64. Kim-Shapiro DB, Schechter AN, Gladwin MT. Unraveling the reactions of nitric oxide, nitrite, and hemoglobin in physiology and therapeutics. Arterioscler Thromb Vasc Biol. 2006; 26(4): 697-705[DOI][PubMed]
  • 65. Webb AJ, Milsom AB, Rathod KS, Chu WL, Qureshi S, Lovell MJ, et al. Mechanisms underlying erythrocyte and endothelial nitrite reduction to nitric oxide in hypoxia: role for xanthine oxidoreductase and endothelial nitric oxide synthase. Circ Res. 2008; 103(9): 957-64[DOI][PubMed]
  • 66. Chen LY, Mehta JL. Evidence for the presence of L-arginine-nitric oxide pathway in human red blood cells: relevance in the effects of red blood cells on platelet function. J Cardiovasc Pharmacol. 1998; 32(1): 57-61[DOI][PubMed]
  • 67. Kleinbongard P, Schulz R, Rassaf T, Lauer T, Dejam A, Jax T, et al. Red blood cells express a functional endothelial nitric oxide synthase. Blood. 2006; 107(7): 2943-51[DOI][PubMed]
  • 68. Jubelin BC, Gierman JL. Erythrocytes may synthesize their own nitric oxide. Am J Hypertens. 1996; 9(12 Pt 1): 1214-9[DOI][PubMed]
  • 69. Ozuyaman B, Grau M, Kelm M, Merx MW, Kleinbongard P. RBC NOS: regulatory mechanisms and therapeutic aspects. Trends Mol Med. 2008; 14(7): 314-22[DOI][PubMed]
  • 70. Cortese-Krott MM, Rodriguez-Mateos A, Sansone R, Kuhnle GG, Thasian-Sivarajah S, Krenz T, et al. Human red blood cells at work: identification and visualization of erythrocytic eNOS activity in health and disease. Blood. 2012; 120(20): 4229-37[DOI][PubMed]
  • 71. Eligini S, Porro B, Lualdi A, Squellerio I, Veglia F, Chiorino E, et al. Nitric oxide synthetic pathway in red blood cells is impaired in coronary artery disease. PLoS One. 2013; 8(8)[DOI][PubMed]
  • 72. Di Pietro N, Giardinelli A, Sirolli V, Riganti C, Di Tomo P, Gazzano E, et al. Nitric oxide synthetic pathway and cGMP levels are altered in red blood cells from end-stage renal disease patients. Mol Cell Biochem. 2016; 417(1-2): 155-67[DOI][PubMed]
  • 73. Reis PF, da Silva CD, Brunini TM, Moss MB, Siqueira MA, Santos SF, et al. Plasma amino acid profile and L-arginine uptake in red blood cells from malnourished uremic patients. J Ren Nutr. 2006; 16(4): 325-31[DOI][PubMed]
  • 74. Siqueira MA, Brunini TM, Pereira NR, Martins MA, Moss MB, Santos SF, et al. Increased nitric oxide production in platelets from severe chronic renal failure patients. Can J Physiol Pharmacol. 2011; 89(2): 97-102[DOI][PubMed]
  • 75. DeBari VA, Bennun A. Cyclic GMP in the human erythrocyte. Intracellular levels and transport in normal subjects and chronic hemodialysis patients. Clin Biochem. 1982; 15(4): 219-21[DOI][PubMed]
  • 76. Wun T, Paglieroni T, Tablin F, Welborn J, Nelson K, Cheung A. Platelet activation and platelet-erythrocyte aggregates in patients with sickle cell anemia. J Lab Clin Med. 1997; 129(5): 507-16[DOI][PubMed]
  • 77. Wun T, Paglieroni T, Field CL, Welborn J, Cheung A, Walker NJ, et al. Platelet-erythrocyte adhesion in sickle cell disease. J Investig Med. 1999; 47(3): 121-7[PubMed]
  • 78. Sirolli V, Strizzi L, Di Stante S, Robuffo I, Procopio A, Bonomini M. Platelet activation and platelet-erythrocyte aggregates in end-stage renal disease patients on hemodialysis. Thromb Haemost. 2001; 86(3): 834-9[PubMed]
  • 79. Sirolli V, Ballone E, Di Stante S, Amoroso L, Bonomini M. Cell activation and cellular-cellular interactions during hemodialysis: effect of dialyzer membrane. Int J Artif Organs. 2002; 25(6): 529-37[PubMed]
  • 80. Santos MT, Valles J, Marcus AJ, Safier LB, Broekman MJ, Islam N, et al. Enhancement of platelet reactivity and modulation of eicosanoid production by intact erythrocytes. A new approach to platelet activation and recruitment. J Clin Invest. 1991; 87(2): 571-80[DOI][PubMed]
  • 81. Valles J, Santos MT, Aznar J, Marcus AJ, Martinez-Sales V, Portoles M, et al. Erythrocytes metabolically enhance collagen-induced platelet responsiveness via increased thromboxane production, adenosine diphosphate release, and recruitment. Blood. 1991; 78(1): 154-62[PubMed]
  • 82. Bonomini M, Sirolli V, Gizzi F, Di Stante S, Grilli A, Felaco M. Enhanced adherence of human uremic erythrocytes to vascular endothelium: role of phosphatidylserine exposure. Kidney Int. 2002; 62(4): 1358-63[DOI][PubMed]
  • 83. Bonomini M, Pandolfi A, Di Pietro N, Sirolli V, Giardinelli A, Consoli A, et al. Adherence of uremic erythrocytes to vascular endothelium decreases endothelial nitric oxide synthase expression. Kidney Int. 2005; 67(5): 1899-906[DOI][PubMed]
  • 84. Mosseri M, Bartlett-Pandite AN, Wenc K, Isner JM, Weinstein R. Inhibition of endothelium-dependent vasorelaxation by sickle erythrocytes. Am Heart J. 1993; 126(2): 338-46[PubMed]
  • 85. Naruse K, Shimizu K, Muramatsu M, Toki Y, Miyazaki Y, Okumura K, et al. Long-term inhibition of NO synthesis promotes atherosclerosis in the hypercholesterolemic rabbit thoracic aorta. PGH2 does not contribute to impaired endothelium-dependent relaxation. Arterioscler Thromb. 1994; 14(5): 746-52[PubMed]
  • 86. Xiao S, Schmidt RJ, Baylis C. Plasma from ESRD patients inhibits nitric oxide synthase activity in cultured human and bovine endothelial cells. Acta Physiol Scand. 2000; 168(1): 175-9[DOI][PubMed]
  • 87. Pandolfi A, Di Pietro N, Sirolli V, Giardinelli A, Di Silvestre S, Amoroso L, et al. Mechanisms of uremic erythrocyte-induced adhesion of human monocytes to cultured endothelial cells. J Cell Physiol. 2007; 213(3): 699-709[DOI][PubMed]
  • 88. Madonna R, Pandolfi A, Massaro M, Consoli A, De Caterina R. Insulin enhances vascular cell adhesion molecule-1 expression in human cultured endothelial cells through a pro-atherogenic pathway mediated by p38 mitogen-activated protein-kinase. Diabetologia. 2004; 47(3): 532-6[DOI][PubMed]
  • 89. Mukai Y, Rikitake Y, Shiojima I, Wolfrum S, Satoh M, Takeshita K, et al. Decreased vascular lesion formation in mice with inducible endothelial-specific expression of protein kinase Akt. J Clin Invest. 2006; 116(2): 334-43[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments